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A distribution shift is when a data distribution
changes from what is expected

e In machine learning, a distribution shift is

when a testing distribution no longer

5.0 -
matches the training distribution 55
Ptest(x) ia Ptrain(x) 0.0-

e Under distribution shift, the patterns learned -2.5-

by a model might not be present in P,
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Distribution shifts are ubiquitous

e Any changes in a current data generating environment can cause shifts

e Applying a model to a new domain is almost always a shift

Input (x) camera trap photo tissue slide
Prediction (y) animal species tumor

Domain (d) camera hospital

Source example

Target example

Exemplar Re
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cell image
perturbed gene

batch

satellite image satellite image wheat image molecular graph online comment product review

land use

time, region

asset wealth wheat head bbox bioassays toxicity

country, ru/ur

location, time scaffold demographic

sentiment

user

code
autocomplete

git repo

What do Black

Overall a solid

import numpy

and LGBT package that as np
people have to has a good
do with bicycle quality of
licensing? construction
for the price. norm=np.___
As a Christian, | *loved* my import
| will not be French press, subprocess
patronizing any it's so perfect as sp
of those and came with
businesses. all this fun p=sp.Popen()
stuff! stdout=p.__




Knowing what has changed under a shift allows us
to more effectively respond to mitigate the shift

e Problem: Most prior works focus on
only detecting a shift and do not help i T D?rteat rllrétvaeke
with “How should | respond?” i stream)
’ Operator
e To most effectively mitigate the shift, an Monitor Model Data Validation
operator needs to know what changed APPrOVa' (check for shift) and Cleaning
o E.g, “Preferences of 18-25 year-olds changed” or J
“X feature of the data intake pipeline is broken” Lﬁgj‘é‘f Model Inference

o . Aid the operator by
explaining how P, shifted to P,

Focus of prior works Focus of this work

A typical ML deployment cycle

PURDUE 4

UNIVERSITY




Distribution shifts can be explained by hypothesizing

how to map .. to Py,

e Given two distributions P, Py
m Rty ‘wm\\
. . . - K K| K
o a transport.map T(-), is a function which e X 3
moves a point from P, to P.,;, such that AR LI L P
Pripgo) = Prgt

e If T is interpretable, it can explain how P, . 73
P P °re g {‘" B,
shifted to Py, O
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We can leverage prior Optimal Transport work to find good
iInterpretable mappings

e By relaxing alignment in Optimal Transport and restricting our possible
mappings to be interpretable we get Intrinsically Interpretable Transport.

Tyr = argmingeq,  Ep, . [E(X;Z(x)z] + A?(PT()Q:Ptestl

Qint: A set of Cost function: T should Divergence: T should
interpretable mappings retain as much of the align Pr(x) and Presy as
original point as possible much as possible

e (., can be defined based on context, or one can use our pre-defined

mappings: k-sparse feature mappings or k-cluster mappings
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Methodology for solving for a shift explanation

- -
) o - o*
Given (S5 W)
o
Pgc Ptgt Clusterable

S

Are the features Are there
or samples clusters in the
interpretable? samples?
Features are ]

interpretable
(e.g., sales data) Clusterable

Samples are interpretable d

(e.g., images)
.
.
.
*

e
‘e
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Solve for k-

parse maps

- Solve for k-

cluster

maps

Solve for
istribution

translation
maps

Our
.Methods
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Baseline Mean

Umy—»m, = [+trump, -women,
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A

....,, -bishops, -000, +hell, -day, -government, + race, -role, +sick]

Explain: 29K more
_ entries
Proposed OT,\’Z;E,Mlz [-women, -men, +man, +people, -like] which aligns 7.3% of non-toxic to toxic comments
k-sparse OTE=29,, = [OTE=S, ] + [+trump, +just, +don’t, +black, -male] which accounts for 11.61% of the shift
Explain:
Oracle o Baseline J’" w Proposed wr
Shift from # - Mean Explain: ‘& k-cluster ,‘r' * " -
Py to o * * F * 4 Explain: 3‘ »v
Pige: - o~ ¥ -
e ¥ o
Baseline Proposed
Random Distributiona
Set |
Explain: Counterfactu
al Explain:

L
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k-Sparse Feature Mappings can show how features
moved along defined axes

o Qf;pam: Find a T which yields the best alignment, while only moving points

along k dimensions
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mean shift: . ——e g >
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Complex ® > 8B g}\
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Oracle Shifts from Py, to Py Tsk=1 Tk=d
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k-Cluster Mappings can show how heterogenous
subgroups have shifted

o () Find k-cluster-specific transport maps which maximizes alignment

k .
cluster-
between PT(ptgt) and P,

o We can restrict per cluster transport maps to a specific class of transport functions

Moving points by
cluster-specific vector:
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Oracle Shift from Pg,. to Py, k-cluster mapping k-cluster mapping
k=3 k=6
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T,;+ can be used to gain actionable insights from
explanations of complex shifts o

e Using our k-cluster mappings QX ..., we can see how heterogenous = '

of T
L . LN
groups (clusters) moved differently under a distribution shift e o
Example of 6-cluster mapping
Baseline Mean Shift Explanation: Baseline Feature More Male More Female | High &
Importance of Domain Income = o cnscamemenme . < Insight O
Classifier Explanation: Age o ameeccdiigpae o o i =
Uy : [Age: 39.7, Edu: 10.2, Inc: 0.29] . =t Income is largest
Education smmdiffens - 2 predictor
Ur : [Age: 36.6, Edu: 10.1, Inc: 0.10] | | | Low @ - M and F
-1 0 1 it etween an
Shap Value (impact on model output)
15 [ 100%@ k - Cluster Explanation (ours), k = 4: InsightO'
] =80% & . . . . '
g / \ ===51 Ml : [Age: 35.6, Edu: 12.9, Inc: 0.00] Hez, : [Age: 29.7, Edu: 8.9, Inc: 0.03] The income
e———— - % 2 . .
£ H 60% 5| Beloch [Age: 32.1, Edu: 12.5, Inc: 0.01] Hez ez [Age: 26.3, Edu: 9.0, Inc: 0.00] difference is
iy 5] T40% ¢ largestin M4,
£ -20% 5 Hes : [Age: 56.3, Edu: 8.4, Inc: 0.13] Kt : [Age: 43.5, Edu: 12.1, Inc: 1.00] rrllidldle-agﬁd
0, . . . . . . . . a u ts Wit a
o R . . -0% ez e [Age: 53.7, Edu: 8.7, Inc: 0.01] et ot [Age: 40.2, Edu: 11.9, Inc: 0.38] bachelor’s degree
Total Number of Clusters (k)

Using O%....... to compare male and female response to the US 1994 Census 10

oot




Transport Maps can also explain distribution shifts in
high-dimensional regimes (images)

P When raw features are nOt Baseline: Visual Inspection of Samples Original | Counterfactual Examples (ours)
S Py Y Py1Pasy Pasz Pass Pas

semantically meaningful, but

samples are (e.g., images), we

can use domain counterfactuals

to understand a complicated T

® Distributional-Counterfactuals :=

{x, T(x): X ~ PsrC)T(x) ~ Ptgt}

Insight : InsightO:
There seems to be a difference in There is a clear difference in staining, and it seems to
staining across hospitals be unique to each hospital

Using StarGAN to show the difference between tissue samples across 5 hospitals
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Methodology for solving for a shift explanation
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— o*
Given(u , -t ) ‘9’ Baseline Mean Umy—»m, = [+trump, -women,........., -bishops, -000, +hell, -day, -government, + race, -role, +sick]
U Explain: 29K more
PSTC Pt t ki Solve for k- entries . . . . .
gt Clusterable Proposed OTM0—>M1_ [-women, -men, +man, +people, -like] which aligns 7.3% of non-toxic to toxic comments

sparse maps,

u k-sparse  QTK=10 - [OTK=3, |+ [+trump, +just, +don’t, +black, -male] which accounts for 11.61% of the shift
1233, = [0TE =y,

Are the features Are there Explain:
or samples clusters in the = —
interpretable? samples? Oracle o Baseline J’" W Proposed w
Features are . Shift from # o~ Mean Explain: "‘&s k-cluster :?' ‘0’ .
interpretable - Sl ity = Pgrcto o * ¢ & = 4 Explain: ¢ F '
(e.g., sales data) Clusterable cluster Py e _ :.y ¥ eod '
maps © / oV ¥ i e

A B B EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEERENB

i Proposed
Solve for eI R :
distributi Random Distributional p, ;
Samples are interpretable t'Str'IutF'on Set Counterfactual .
(e.g., images) . fansiation Explain: Explain: , }; *

. maps 2P At
" [(Fan N
.
" Our

te Methods
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