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Abstract

Distribution shift can have fundamental consequences
such as signaling a change in the operating environment
or significantly reducing the accuracy of downstream mod-
els. Thus, understanding such distribution shifts is critical
for examining and hopefully mitigating the effect of such
a shift. Most prior work has focused on either natively
handling distribution shift (e.g., Domain Generalization) or
merely detecting a shift while assuming any detected shift
can be understood and handled appropriately by a human
operator. For the latter, we hope to aid in these manual
mitigation tasks by explaining the distribution shift to an
operator. To this end, we suggest two methods: providing a
set of interpretable mappings from the original distribution
to the shifted one or providing a set of distributional coun-
terfactual examples. We provide preliminary experiments
on these two methods, and discuss important concepts and
challenges for moving towards a better understanding of
image-based distribution shifts.

1. Introduction
Most real-world environments are constantly changing

and understanding how a specific operating environment
has changed is crucial to making decisions respective to
such a change. Such a change might be a new data distri-
bution seen in deployment which causes a machine learning
model to begin to fail. When these changes are encountered,
the burden is often placed on a human operator to investi-
gate the shift and determine the appropriate reaction, if any,
that needs to be taken. In this work, our goal is to aid these
operators by providing an explanation of such a change.

This ubiquitous phenomena of having a difference be-
tween related distributions is known as distribution shift.
Much prior work focuses on detecting distribution shifts;
however, there is little prior work on understanding or char-
acterizing a detected distribution shift. A naïve baseline in
analyzing an image-based distribution shift is to compare a
grid of samples from the original, i.e., source, distribution
to a grid of samples from the new, i.e., target, distribution.

However, due to the complexity of image-based shifts, this
approach can be uninterpretable or even misleading to an
operator (e.g., the left parts of Figure 1 and Figure 2).

Therefore, we propose two preliminary methods for ex-
plaining image-based distribution shifts and discuss open
challenges. The first is a novel framework which provides
an operator with interpretable mappings which shows how
latent features have changed or how latent groups have
shifted between the distributions. The second approach
is similar to that of unpaired Image-to-Image Translation
(I2I) [14] such as CycleGAN [24], and explains the shift to
the operator as pairs of a real example and its corresponding
counterfactual example. These counterfactuals are gener-
ated by mapping samples from one domain to the other do-
main such that the distributions become indistinguishable.
We summarize our contributions as follows:

• We introduce high-dimensional interpretable transport
maps for explaining image-based shifts if an inter-
pretable latent space is known.

• We also leverage prior I2I work to explain image-based
distribution shifts via counterfactual examples if an in-
terpretable latent space is unavailable.

• We provide preliminary results and interpretations.

• We discuss open questions for explaining image-based
distribution shifts.

2. Explaining Image Distribution Shifts via
Transportation Maps

The underlying assumption of distribution shift is that
there exists a relationship between the source and target dis-
tributions. From a distributional standpoint, we can view
distribution shift as a movement, or transportation, of sam-
ples from the source distribution Psrc to the target distribu-
tion Ptgt. Thus, we can capture this relationship between
the distributions via a transport map T from the source dis-
tribution to the target, i.e., if x ∼ Psrc, then T (x) ∼ Ptgt.
Additionally, if an interpretable representation of the map



T can be formed, this representation can be provided to an
operator to aid in understanding and reacting to shifts more
effectively. However, an interpretable representation likely
requires interpretable (latent) features, which may not be
available for some image domains. In this case, we can rep-
resent the map by merely showing pairs of inputs x and
“counterfactual” outputs T (x). Therefore, we define a shift
explanation to be: a (possibly interpretable) transport map
T that maps a source distribution Psrc onto a target distri-
bution Ptgt such that T♯Psrc ≈ Ptgt.

2.1. Interpretable Transportation Maps

In order to find such a mapping between distributions,
it is natural to look to Optimal Transport (OT) due to it
allowing for a rich geometric structure on the space of
distributions and having extensive prior work in this field
[1, 5, 15, 21]. An OT mapping is originally defined by
Monge [15,22] as a method of aligning two distributions in
a minimal cost way given a transport cost function c. To find
interpretable transport maps, we build upon the OT frame-
work by restricting the candidate transport maps to belong
to a set of user-defined interpretable mappings Ω. Addition-
ally we use a Lagrangian relaxation on the full alignment
constraint seen in OT, giving us an Interpretable Transport
mapping TIT :
TIT := argmin

T∈Ω
EPsrc

[c(x, T (x))] + λ ϕ(PT(x), Ptgt)

(1)
where ϕ(·, ·) is a divergence function, which, unless oth-
erwise stated, is assumed to be the squared Wasserstein-2
metric, W 2

2 .
An example of an set of interpretable mappings Ω is

k-cluster mappings. Where given a k ∈ {1, . . . , d} we
define k-cluster transport to be a mapping which moves
each point x by constant vector which is specific to x’s
cluster. More formally, we define a labeling function
σ(x;M) ≜ argmin j ∥mj − x∥2, which returns the
index of the column in M (i.e., the label of the cluster)
which x is closest to. With this, we define Ω

(k)
cluster ={

T : T (x) = x+ δσ(x;M),M ∈ Rd×k,∆ ∈ Rd×k
}

,
where δj is the jth column of ∆. For another set of
interpretable mappings (k-sparse transport) and methods
for solving for these mappings in practice, please see
section Appendix C.

In order to find interpretable transport mappings for
high dimensional spaces like images, we can project Psrc

and Ptgt onto an interpretable latent space (e.g., a space
which has disentangled and semantically meaningful di-
mensions) which is learned by some (pseudo-)invertible
function g : Rd → Rk where k < d (e.g., an au-
toencoder). Then we can solve for an interpretable map-
ping such that it aligns the distributions in the latent space,
PT (g(x)) ≈ Pg(y). For counterfactual purposes, we can use
g−1 to project T (g(x)) back to Rd in order to display the

transported image to an operator. With this, we can define
our set of high dimensional interpretable transport maps:
Ωhigh-dim :=

{
T : T = g−1

(
T̃ (g(x))

)
, T̃ ∈ Ω, g ∈ I

}
where Ω a the set of interpretable mappings and I is the
set of (pseudo-)invertible functions with a interpretable (i.e.,
semantically meaningful) latent space. Given an inter-
pretable g ∈ I, we define our problem as:

argmin
T̃∈Ω(k)

EPsrc

[
c
(
g(x), T̃ (g(x))

)]
+λϕ(PT̃ (g(x)), Pg(y))

(2)
which results in an interpretable map T̃ which approxi-
mately shows how images from Psrc shifted to Ptgt in a
semantically meaningful way (e.g., how the H&E staining
in histopathology images changes across hospitals).

2.2. Counterfactuals via Unpaired Image-to-image
Translation

In some cases, a shift cannot be expressed by an in-
terpretable mapping function because an interpretable la-
tent space is not known. Thus, we can remove the inter-
pretability constraint, and leverage methods from the un-
paired Image-to-Image translation (I2I) literature to trans-
late between the source and target domain while preserv-
ing the content. For a comprehensive summary of the
recent I2I works and methods, please see [14]. Once
a mapping is found, to serve as an explanation, we can
provide an operator with a set of counterfactual pairs
{(x, T (x)) : x ∼ Psrc, T (x) ∼ Ptgt}. Then, by determin-
ing what commonly stays invariant and what commonly
changes across the set of counterfactual pairs, this can serve
as an explanation of how the source distribution shifted to
the target distribution. While more broadly applicable, this
approach could put a higher load on the operator than the
interpretable mapping approach.

3. Experiments

In this section we provide preliminary results show-
ing the advantages and shortcomings of explaining shifts
via interpretable transportation maps and via counterfac-
tual pairs. We begin with explaining a shifted Color
MNIST dataset via cluster-based transportation maps using
a semi-supervised VAE [18]. Next, we use StarGAN [4]
to generate counterfactual examples to explain the shift in
histopathology images across five hospitals as seen in the
Stanford Wilds [9] variant of the Camelyon17 dataset [2]. 1

1Code to recreate all experiments can be found at
https://github.com/inouye-lab/towards-explaining-image-distribution-
shifts.

https://github.com/inouye-lab/towards-explaining-image-distribution-shifts
https://github.com/inouye-lab/towards-explaining-image-distribution-shifts


3.1. Explaining a Colorized-MNIST shift via High-
dimensional Interpretable Transport

This experiment consists of using k-cluster maps to ex-
plain a shift in a colorized-version of MNIST, where the
source environment has more yellow digits with a light gray
background while the target environment consists of more
red digits and/or darker gray backgrounds. The data is
created by randomly red/yellow colorizing the foreground
and grayscale coloring the background of 60,000 grayscale
MNIST digits [6]. The source distribution Psrc is set to be
be any images where colorized digits that had over 40% of
the green channel visible (thus yielding a yellow color) and
a background at least 40% white, and the target environment
Ptgt is all other images. Informally, this split can be thought
of as three heterogeneous sub-shifts: a shift which is only
reddens the foreground digit, a second shift which only a
darkens the background, and a third shift which both red-
dens the digit reddening and darkens the background. The
environments can be seen in Figure 3 in the Appendix.

We follow the framework presented in Equation 2, where
g is a semi-supervised VAE [18] with a latent dimension of
50. The SSVAE was trained for 200 epochs on a concatena-
tion of both Psrc and Ptgt with 80% of the labels available
per environment, and a batch size of 128 and otherwise fol-
lowed the training details in [18]. To explain the shift, we
use Algorithm 1 in the appendix to learn k = 3 cluster maps
because there are 3 subshifts.
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Figure 1. The baseline of unpaired source and target samples (left)
is unable to distinguish between the three subshifts. Our cluster-
based transport (right) separates the shift into 3 subshifts: C(1)

clearly reddens the digit color but maintains the background color,
C(2) clearly darkens the background color but maintains the digit
color, and C(3) changes both the digit color and background color.

While the cluster map is inherently simple because each
map merely translates points by a constant vector, the latent
features are not disentangled into semantically meaningful
features. Thus, to represent the cluster map, we merely
show input and output pairs for each cluster map. The goal
is for the operator to discern the meaning of each cluster’s
shift by finding the invariances for each cluster. The cluster
based explanations can be seen in Figure 1. Our preliminary

results demonstrate that k-cluster transport can explain this
heterogeneous shift by separating at least two distinct shifts
in the data. However, we acknowledge that this is a rela-
tively simple example and expect more work will be needed
to improve this idea for real-world image shifts.

3.2. Explaining Shifts in H&E Images Across Hos-
pitals via Counterfactual Examples

This experiment explores the alternative for explaining
image-based distribution shifts by supplying an operator
with a set of translated images (i.e., a set of images from
the source distribution which have been altered to look
like they belong to the target distribution), with the no-
tion that the operator would resolve which semantic fea-
tures are distribution-specific. We apply this approach the
Camelyon17 dataset [2] which is a real-world distribution
shift dataset that consists of whole-slide histopathology im-
ages from five different hospitals. We use the Stanford
WILDS [9] variant of the dataset which converts the whole-
slide images into over 400 thousand patches. Since each
hospital has varying hematoxylin and eosin (H&E) staining
characteristics, this, among other batch effects, leads to het-
erogeneous image distributions across hospitals as can be
seen in Figure 2.

To generate the counterfactual examples, we treat each
hospital as a domain and train a StarGAN model [4] to
translate between each domain. For training, we followed
the original training approach seen in [4], with the excep-
tion that we perform no center cropping. After training, we
can generate image counterfactual examples via inputting a
source image and the label of the target hospital domain to
the model.

Counterfactual generation was done for all five hospitals
and can be seen in the right-hand side of Figure 2. It can be
seen that the StarGAN model captures the different staining
characteristics across the hospitals. For example, hospital 1
(P1) consists of mostly light staining and thus transporting
to this domain usually involves a lightening of image while
P3 seems to have more hematoxylin stain thus leading to
deeper purple images when pushing onto this domain. We
can also see that the model tends to respect the content of
the image where patches which contain tumor cells (e.g., the
P5 sample on the right-hand side) still contain tumor cells in
the counterfactual cases and likewise for lymphocyte cells
(e.g., the P4 sample on right-hand side).

4. Open Questions for Explaining Image-based
Distribution Shifts

In this section, we introduce a series of open questions
which we hope will help move towards developing the
foundations for explaining image-based distribution shifts
including defining exemplar tasks, metrics, datasets, and
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Figure 2. The baseline method of unpaired samples (left) which re-
quires many samples to begin to understand the differences across
the hospitals domains (represented as P1, P2, . . . ). Our expla-
nation approach (right) of showing paired counterfactual images
translated between the hospital domains (where the (i, j) row, col-
umn pair represents the pushforward of the ith domain onto the jth

domain) quickly makes it clear how the staining/coloring differs
across the hospital domains.

baseline methods. We begin with introducing tasks where
an operator would need to understand a distribution shift
and give criteria for finding exemplar datasets which can
serve as benchmarks for the tasks. Then we discuss pos-
sible other approaches for explaining distribution shift and
close with suggesting criteria for evaluating and comparing
such methods.

We (non-exhaustively) envision several possible tasks:
Knowledge discovery - This would entail helping an op-
erator extract knowledge by characterizing the differences
between distributions (e.g., finding important differences in
nanostructure imaging with different experimental condi-
tions), and would focus on complex distribution shifts that
would not be easy to understand using conventional visual-
ization or dataset inspection tools. Post-hoc explanations
of model failure due to shifts - This would involve finding
the qualitative differences between the training environment
and this new testing environment that caused the model to
fail. It would help an operator answer the question: Can we
determine how to alleviate this problem? Should we collect
more labeled data, adjust the instrument, or robustify the
model? Detecting adversarial shifts This would help an
operator determine if the distributional changes are due to
benign effects or due to an adversary (i.e., an enemy com-
promises a surveillance camera). Due to the highly context-
dependent nature of distribution shift, it would be beneficial
to have exemplar datasets on which to train and evaluate
methods for each of these tasks. Ideally, these distribution
shift examples would be complex distribution shifts—not
something that can be easily explained by a simple plot or
by looking at the difference in mean statistics—, have real-

world use cases where understanding the distribution shift
is important, and has some form of known oracle explana-
tion(s) that could be used to validate a predicted explanation
against.

In this paper we introduced a novel way for explaining
image-based distribution shifts via interpretable transport
maps; however, there are other ways characterize and ex-
plain an image-based distribution shift. For example, we
also discuss and show how image translation works can be
used to explain distribution shift via providing an opera-
tor with sets of counterfactual pairs. However, we are not
sure if the current work in I2I can directly be applied to ex-
plain distribution shifts. For example, the problem of style-
transfer focuses on transferring the “style” of an image to
between two domains while keeping the “content” constant,
but what is considered “content” likely needs to be specified
by an operator for their specific context in order to be di-
rectly actionable (e.g., ensuring road features are considered
constant when analyzing human-driving data). Another ap-
proach would be to find a causal model of the semantic con-
tent between the two distributions, and characterizing the
causal differences between them (e.g., the approach of [3]
applied to images). In addition to finding methods for ex-
plaining image-based distribution shifts, we need ways to
evaluate and compare methods. For transport maps, we sug-
gest that a natural metric is to determine how well the trans-
ported source distribution aligns with the target distribution
via distributional divergences such as Wasserstein distance
or KL divergence. However, the interpretability or action-
ability of a shift explanation is more challenging to define.
A proxy method for evaluating this would likely be task spe-
cific (but ideally not dataset specific) and should not require
expensive human evaluation. For mapping-based methods,
the measurement of interpretability could be a function of
the complexity of the mapping, however, how to system-
atically measure the interpretability of counterfactual ap-
proaches is currently unclear.

5. Conclusion

In this paper, we introduced a novel framework for ex-
plaining image-based distribution shift using transport maps
T between a source and target distribution. If a semantically
meaningful latent space is known, we can constrain T to be
relatively simple. If a meaningful latent space is unavail-
able, we show how prior image-to-image translation work
can explain such shifts via sets of counterfactual examples.
We demonstrate both approaches on two distribution shift
examples. We then initialized a discussion which hopefully
will lead to a better foundation of explaining image distri-
bution shifts. We ultimately hope this work lays the ground-
work explaining and thus understanding image distribution
shifts.
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A. Related Works
The first step in explaining distribution shift is detecting such a shift. Many previous works have worked on this problem

via methods such as statistical hypothesis testing of the input features [13,16,17], training a domain classifier to test between
source and non-source domain samples [11], etc. However, these works’ primary purpose is to provide the binary information
of whether a shift has occurred or not and leave any post-detection methods up to the user (i.e., debugging and/or likely
refitting a model).

In [3, 10], the authors attempt to provide more information via localizing a shift to a subset of features or causal mecha-
nisms. [10] does this by introducing the notion of Feature Shift, which first detects if a shift has occurred and if so, localizes
that shift to a specific subset of features which have shifted from source to target. This is defined using a hypothesis test
which checks for any discrepancy between the conditional distributions of one feature given the rest for both the source
and target distributions. The authors use ϕFisher(Psrc(xj |x−j), Ptgt(xj |x−j)), as a measure of conditional divergence and
report any features which have a statistically significant conditional shift from source to target. In [3], the authors take a
causal approach via individually factoring the source and target distributions into a product of their causal mechanisms (i.e.,
a variable conditioned on its parents) using a shared causal graph, which is assumed to be known/discoverable. Then, the
authors “replace” a subset of causal mechanisms from Psrc with Ptgt, and measure divergence from Psrc (i.e. measuring how
much the subset change affects the source distribution). How much each mechanism contributes to all possible swaps is mea-
sured (or approximated), and is deemed to be the amount that node can be “assigned blame” for the causing the change in the
distribution. While both of these methods more information about distribution shift, they are mainly detection-based methods
(via identifying shifted causal mechanisms or feature-level shifts), unlike an explanatory mapping which helps explain how
the data has shifted.

The characterization of the problem of distribution shift has been extensively studied [12, 16, 19] via breaking down a
joint distribution P (x, y) of features x and outputs y, into conditional factorizations such as P (y|x)P (x) or P (x|y)P (y).
For covariate shift [20] the P (x) marginal differs from source to target, but the output conditional remains the same, while
label shift (also known as prior probability shift) [11, 23] is when the P (y) marginals differ from source to target, but the
full-feature conditional remains the same. In this work, we refer to general problem distribution shift, i.e., a shift in the joint
distribution (with no distinction between y and x), and leave applications of explaining specific sub-genres of distribution
shift to future work.

In contrast with current domain generalization benchmarks (e.g., WILDS [9] and DomainBed [7] benchmarks) which are
focused on compiling ML train/test distribution shifts, our goal is understanding the shifts (e.g., for knowledge discovery or
appropriate mitigation) rather than performing well under shifts. Thus, we even consider distribution shifts that are artificial
yet interesting (like splitting the data on an attribute like gender)—or shifts based on thresholding a simulation parameter.
Further, our goal likely requires shifts for which some form of ground truth explanation is known (which allows for validation
of generated explanations).

B. Interpretable Transport Sets
A de facto standard practice for explaining distribution shift is comparing the means of the source and the target distribu-

tions. The mean shift explanation can be generalized as Ωvector = {T : T (x) = x+ δ} where δ is a constant vector and mean
shift being the specific case where δ is the difference of the source and target means. By letting δ be a function of x, which
further generalizes the notion of mean shift by allowing each point to move a variable amount per dimension, we arrive at a
transport set which includes any possible mapping T : Rd → Rd. However, even a simple transport set like Ωvector can yeild
uninterpretable mappings in high dimensional regimes (e.g., a shift vector of over 100 dimensions). To combat this, we can
regulate the complexity of a mapping by forcing it only move points along a specified number of dimensions. We define this
as k-Sparse Transport:

k-Sparse Transport: For a given class of transport maps, Ω and a given k ∈ {1, ..., d}, we can find a subset Ω(k)
sparse which

is the set of transport maps from Ω which only transport points along k dimensions or less. Formally, we define an active set
A to be the set of dimensions along which a given T moves points: A(T ) ≜ {j ∈ {1, . . . , d} : ∃x, T (x)j − xj ̸= 0}. Then,
we define Ω

(k)
sparse = {T ∈ Ω : |A(T )| ≤ k}.

k-sparse transport is most useful in situations where a distribution shift has happened along a subset of dimensions, such as
explaining a shift where some sensors in a network are picking up a change in an environment. However, in situations where
points shift in different directions based on their original value, e.g., when investigating how a heterogeneous population
responded to an advertising campaign, k-sparse transport is not ideal. Thus, we provide a shift explanation which breaks the



source and target distributions into k sub-populations and provides a vector-based shift explanation per sub-population. We
define this as k−cluster transport:

k-Cluster Transport Given a k ∈ {1, . . . , d} we define k-cluster transport to be a mapping which moves each point x by
constant vector which is specific to x’s cluster. More formally, we define a labeling function σ(x;M) ≜ argmin j ∥mj −
x∥2, which returns the index of the column in M (i.e., the label of the cluster) which x is closest to. With this, we define
Ω

(k)
cluster =

{
T : T (x) = x+ δσ(x;M),M ∈ Rd×k,∆ ∈ Rd×k

}
, where δj is the jth column of ∆.

Since measuring the exact interpretability of a mapping is heavily context dependent, we can instead use k in the above
transport maps to define a partial ordering of interpretability of mappings within a class of transport maps. Let k1 and k2
be the size of the active sets for k-sparse maps (or the number of clusters for k-cluster maps) of T1 and T2 respectively. If
k1 ≤ k2, then Inter(T1) ≥ Inter(T2), where Inter(T ) is the interpretability of shift explanation T . For example, we claim
the interpretability of a T1 ∈ Ω

(k=10)
sparse is greater than (or possibly equal to) the interpretability of a T2 ∈ Ω

(k=100)
sparse since a

shift explanation in Ω which moves points along only 10 dimensions is more interpretable than a similar mapping which
moves points along 100 dimensions. A similar result can be shown for k-cluster transport since an explanation of how 5
clusters moved under a shift is less complicated than an explanation of how 10 clusters moved. The above method allows us
to have a partial ordering on interpretability without having to determine the absolute value of interpretability of a individual
explanation T , as this requires expensive context-specific human evaluations, which is out of scope for this paper.

C. Practical Methods for Finding and Validating Shift Explanations
In this section, we discuss practical methods for shift explanations. We first discuss using our k-sparse and k-cluster

maps to allow a user to automatically change the level of interpretability of a shift explanation as desired. Coupled with a
PercentExplained metric, this gives an operator various levels/complexities of explanation and a way to validate them. Next,
we propose a practical approximation to Equation 1, the Interpretable Transport equation, and Sections C.3 and C.4 cover
how to find the optimal explanation from Ω

(k)
sparse and Ω

(k)
cluster for this equation.

C.1. Interpretability as a Hyperparameter

By optimizing Equation 1 we can find the best shift explanation for a given set of interpretable transport maps Ω. However,
directly defining a Ω which contains candidate mappings which are guaranteed to be both interpretable and expressive enough
to explain a shift can be a difficult task. Thus, we can instead set Ω to be a super-class, such as Ωvector given in Appendix B,
and then adjust k until a Ω(k) is found which matches the needs of the situation. This allows a human operator to request
a mapping with better alignment by increasing k, which correspondingly will decrease the mapping’s interpretability, or
request a more interpretable mapping by decreasing the complexity (i.e., decreasing k) which will decrease the alignment.

To assist an operator in determining if the interpretability hyperparameter should be adjusted, we introduce a PercentEx-
plained metric, which we define to be:

PercentExplained(Psrc, Ptgt, T ) :=
W 2

2 (Psrc, Ptgt)−W 2
2 (T♯Psrc, Ptgt)

W 2
2 (Psrc, Ptgt)

(3)

where W 2
2 (·, ·) is the squared Wasserstein-2 distance between two distributions. By rearranging terms (and ignoring the

percentage scaling factor) we get 1 − W 2
2 (T♯Psrc,Ptgt)

W 2
2 (Psrc,Ptgt)

, which shows this metric’s correspondence to the statistics coefficient
of determination R2, where W 2

2 (T♯Psrc, Ptgt) is analogous to the residual sum of squares and W 2
2 (Psrc, Ptgt) is similar to

the total sum of squares. This gives an approximation of how much a current shift explanation T accurately maps onto a
target distribution. This can be seen as a normalization of a mapping’s fidelity with the extremes being T♯Psrc = Ptgt, which
fully captures a shift, and T = Id, which does not move the points at all. When provided this metric along with a shift
explanation, an operator can decide whether to accept the explanation (e.g., the PercentExplained is sufficient and T is still
interpretable) or reject the explanation and adjust k.

C.2. Empirical Interpretable Transport

Since the divergence term in Equation 1 can be computationally-expensive to optimize over in practice, we suggest an
empirical approximation to the interpretable transport solution:

argmin
T∈Ω

1

N

N∑
i=1

c(x(i), T (x(i)) + λd(T (x(i)), TOT (x
(i))) (4)



where d is a distance function such as the l2 distance or squared euclidean distance. Most notably, the divergence value in
Equation 1 is replaced with the sum over distances between T (x) and the optimal transport mapping for x. This is computa-
tionally attractive as the optimal transport solution only needs to be calculated once, rather than calculating the Wasserstein
distance once per iteration like in the Interpretable Transport solution (which even if the W -distance is approximated, can
be expensive over many iterations). For optimization purposes, this is also reasonable since 1

N

∑N
i=1 d(T (x

(i)), TOT (x
(i)))

upper-bounds ϕ(PT (x), Py), when d = ℓ22, ϕ = W 2
2 and N approaches the population size of Psrc (proof shown in appendix).

C.3. Finding k-Sparse Maps

Let k be a desired level of interpretability, which for k-sparse maps is equivalent to saying k = |A(T )|, where A is our
active feature set (i.e., the dimensions along which our mapping can shift points). Our goal is to find the optimal k features
to include in A and then find the best transport along those features for a given transport class Ω. A simple (and often ideal)
approach to feature selection problem is to select the k features which have the largest shift in their mean from the source
distribution to the target distribution; this approach is used throughout this paper. Although the chosen T will depend the
optimization over Ω, we provide two closed form solutions which give optimal alignment for a given k under cases where
Ω = Ωvector and when Ω is all possible mappings. The mapping which gives the best alignment in Ω

(k)
vector is k-sparse mean

shift, i.e., T (x) = x+ µ̃ where µ̃ is a vector where the jth coordinate is [µtgt−µsrc]j , if j ∈ A, else, it is 0. When Ω(k) is all
k-sparse functions, the shift explanation which minimizes the distance term in Equation 4 is the k-sparse optimal transport
solution which sets each feature in A to match that of the OT push forward for that feature, i.e., [T (x)]j = [TOT (x)]j if
j ∈ A, else [x]j . The proofs for the two previous claims can be seen in the Appendix.

C.4. Finding k-Cluster Maps

Instead of shifting respective to features, we can define k vector shifts for k groups in our source domain, with the goal of
explaining how each group changed from source to target. To do this, we perform paired clustering in the source and target
domains, so that we can relate a given cluster in Psrc to its most similar counterpart in Ptgt (as opposed to pushing the k
clusters in Psrc onto the entire target domain). With this, we construct Msrc and Mtgt where the k columns of M represent
the k cluster means for the source and target distributions, respectively. Then, we define ∆ = Mtgt −Msrc so that each
vector shift δj is the difference in means between the jth source and the target clusters. In practice, the set of paired clusters
can be found by performing clustering in a joint Z space of Psrc and PTOT (x) where the resultant k cluster centroids in this
space are of the form [Msrc,Mtgt].

Formally, this is done using the following algorithm:

Algorithm 1 Finding k Paired Clusters

Input: X , Y , k
d← X.ndim
TOT ← OptimalTransportAlg(X,Y ) //e.g., Sinkhorn
Z ← [X,TOT (X)]
Zcluster−centroids ← ClusteringAlg(Z, k) //e.g., k-means
Msrc ← [Zcluster−centroids]1:d //slicing column-wise
Mtgt ← [Zcluster−centroids]d:2d
Output: Msrc, Mtgt

C.5. Proof that the distance in empirical interpretable transport upper-bounds the Wasserstein distance

First, let’s remember our empirical method for finding T :

argmin
T∈Ω

1

N

N∑
i

c(x(i), T (x(i))) + λd(T (x(i)), TOT (x
(i))) (5)

where TOT is the optimal transport solution between our source and target domains with the given c cost function. The
distance term d on the right-hand side of this equation is assumed to be the ℓ2 cost or squared euclidean cost, and is an empir-
ical approximation of the divergence term ϕ(PT (x), PY ) in Equation 1, where ϕ is assumed to be the Wasserstein distance,
W . We claim this is a reasonable approximation since as N approaches the size of the dataset (or for densities, limN→∞),



the distance term becomes the expectation: Ex∼Psrcd(T (x
(i)), TOT (x

(i))) which is an upper-bound on the W (PT (x), PY )
distance. To show this, we start with the expanded W distance:

W (PT (x), PY ) = min
R∈Ψ

Ex∼Psrcd (T (x), R(T (x))) , Ψ := {R : R♯T (x) = PY }

≤ Ex∼Psrc
d (T (x), R(T (x))) , ∀R ∈ Ψ

If we let Q = TOT · T−1, and since Q ∈ Ψ we can say
≤ Ex∼Psrcd (T (x), Q(T (x))) = Ex∼Psrcd (T (x), TOT (x)))

=⇒ W (PT (x), PY ) ≤ Ex∼Psrcd (T (x), TOT (x)))

C.6. Proving the k-sparse optimal transport is the k-sparse transport that minimizes our distance from OT
loss

When performing unrestricted k-sparse transport, i.e., where Ω
(k)
sparse is any transport which only moves points along k

dimensions, the k-sparse optimal transport solution is the exact mapping that minimizes the distance function in the right-
hand side of Equation 5 if d is the ℓ2 distance or squared Euclidean distance. As a reminder, k-sparse optimal transport is:
[T (x)]j = [TOT (x)]j if j ∈ A, else [x]j , whereA is the active set of k dimensions which our k-sparse transport T can move
points. Let Ā be A’s compliment (i.e. the dimensions which are unchanged under T ). Let z = T (x), zOT = TOT (x), and
x ∈ Rn×d. If d is the squared Euclidean distance:

d(z, zOT ) =
∑
j∈[d]

∑
i∈[n]

(
zi,j − zOTi,j

)2
=

∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+

∑
j∈Ā

∑
i∈[n]

(
xi,j − zOTi,j

)2
︸ ︷︷ ︸

=α , since constant w.r.t T

=
∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+ α

now if T is the truncated optimal transport solution, [z]j = [zOT ]j ∀j ∈ A
= 0 + α

Since α is the minimum of d(z − zOT ) for a given A, the truncated optimal transport problem minimizes the
d(T (x(i)), TOT (x

(i))) distance. This can easily be extended to show that the optimal active set for this case is the one
that minimizes α, thus the active set should be the k dimensions which have the largest squared difference between x and
zOT .

C.7. Proof that k-mean shift is the k-vector shift that yields the best alignment

When performing k-sparse vector transport, i.e., where Ω(k)
vector = {T : T (x) = x+δ̃}where δ̃ = [δ]j if j ∈ A else [δ]j =

0 and δ ∈ Rd, |A| ≤ k, the k-sparse mean shift solution is the exact mapping that minimizes the distance function in the
right-hand side of Equation 5 when d is the ℓ1 distance.



d(z, zOT ) =
∑
j∈[d]

∑
i∈[n]

(
zi,j − zOTi,j

)2
=

∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+

∑
j∈Ā

∑
i∈[n]

(
xi,j − zOTi,j

)2
︸ ︷︷ ︸

=α , since constant w.r.t T

=
∑
j∈A

∑
i∈[n]

(
zi,j − zOTi,j

)2
+ α

=
∑
j∈A

∑
i∈[n]

(
xi,j + δj − zOTi,j

)2
+ α

=
∑
j∈A

∑
i∈[n]

(
x2
i,j + δ2j + z2

OTi,j
+ 2δj(xi,j − zOTi,j )− 2zOTi,jδj − 2xi,jzOTi,j

)
+ α

Similar to the k-sparse optimal transport solution, we can see that A should be selected as the k dimensions which have
the largest shift, thus minimizing α. The coordinate-wise gradient of the above equation is:

∇δj d(z, zOT ) =

{∑
i∈[n]

(
2δj + 2xi,j − 2zOTi,j

)
j ∈ A

0 j ∈ Ā

Now with this we can say:

∇δj∈A d(z, zOT ) =
∑
i∈[n]

(
2δj + 2xi,j − 2zOTi,j

)
= 2nδj +

∑
i∈[n]

(
2xi,j − 2zOTi,j

)
now let δj = δ∗j

0 = 2nδ∗j +
∑
i∈[n]

(
2xi,j − 2zOTi,j

)
nδ∗j =

∑
i∈[n]

(
zOTi,j − xi,j

)
δ∗j =

1

n

∑
i∈[n]

(
zOTi,j − xi,j

)
δ∗j = µzOTj

− µxj

Thus showing the optimal delta vector to minimize k-vector transport is exactly the k-sparse mean shift solution.

D. Additional Experiment Details and Results
Here we provide more raw samples from the ColorMNIST experiment as well as an additional counterfactual example

experiment, but this time on a toy dataset (as opposed to the real world experiment seen in subsection 3.2) to illustrate the
power of distributional counterfactual examples.

D.1. Additional Counterfactual Example Experiment to Explain a Multi-MNIST shift

As mentioned in subsection 3.2, image-based shifts can be explained by supplying an operator with a set of distributional
counterfactual images with the notion that the operator would resolve which semantic features are distribution-specific. Here
we provide a toy experiment (as opposed to the real world experiment seen in subsection 3.2) to illustrate the power of
distributional counterfactual examples. To do this, we apply the distributional counterfactual example approach to a Multi-
MNIST dataset where each sample consists of a row of three randomly selected MNIST digits [6] and is split such that Psrc

consists of all samples where the middle digit is even and zero and Ptgt is all samples where the middle digit is odd.



Figure 3. Samples from the source environment (left) with more yellow digits and lighter backgrounds while the target environment (right)
has more red digits and/or darker backgrounds.

To generate the counterfactual examples, we use a Domain Invariant Variational Autoencoder (DIVA) [8], which is de-
signed to have three independent latent spaces: one for class information, one for domain-specific information (or in this
case, distribution-specific information), and one for any residual information. We trained DIVA on the Shifted Multi-MNIST
dataset for 600 epochs with a KL-β value of 10 and latent dimension of 64 for each of the three sub-spaces. Then, for each
image counterfactual, we sampled one image from the source and one image from the target and encoded each image into
three latent vectors: zy , zd, and zresidual. The latent encoding zd was then “swapped” between the two encoded images, and
the resulting latent vector set was decoded to produce the counterfactual for each image. This process is detailed in Algorithm
2 below. The resulting counterfactuals can be seen in Figure 4 where the middle digit maps from the source (i.e., odd digits)
to the target (i.e., even digits) and vice versa while keeping the other content unchanged (i.e., the top and bottom digits).

Algorithm 2 Generating distributional counterfactuals using DIVA

Input: x1 ∼ D1, x2 ∼ D2, model
zy1 , zd1 , zresidual1 ← model.encode(x1)
zy2

, zd2
, zresidual2 ← model.encode(x2)

x̂1→2 ← model.decode(zy1
, zd2

, zresidual1 )
x̂2→1 ← model.decode(zy2

, zd1
, zresidual2 )

Output: x̂1→2, x̂2→1



𝑃!"# 𝑃!"#→ 𝑃$%$ 𝑃$%$𝑃$%$→ 𝑃!"#𝑃!"# 𝑃$%$

Figure 4. A comparison of the baseline grid of unpaired source and target samples (left) and counterfactual pairs (right) which shows how
counterfactual examples can highlight the difference between the two distributions. For each image, the top left digit represents the class
label, the middle digit represents the distribution label (where Psrc only contains even digits and zero and Ptgt has odd digits), and the
bottom right digit is noise information and is randomly chosen. The second, third columns show the counterfactuals from Psrc → Ptgt

and Ptgt → Psrc, respectively. Hence we can see under the push forward of each image the “evenness” of the domain digit changes while
the class and noise digits remain unchanged.
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